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MATCHED-CONIC SOLUTTIONS TO ROUND-TRIP INTERPLANETARY
TRAJECTORY PROBLEMS THAT INSURE STATE VECTOR
CONTINUITY AT ALL BOUNDARIES

By Victor R. Bond

SUMMARY

A technique for matching conic trajectories at gravitation sphere-of-
influence boundaries is presented. The match is done insuring continuity
in position, velocity, and time at the sphere-of-influence boundaries.

The technique is extended to several types of round-trip planetary missions
and has the capability of satisfying in-flight constraints at the target
planet. The types of missions considered are the free flyby, the powered
flyby, and the stopover mission with a parking orbit about the target
planet. An example of each of these mission types is presented.

INTRODUCTION

Matched-conic, or analytic, solutions to interplanetary trajectory
problems have been used quite successfully during the past few years for
mission studies (ref. 1) and as first approximation to more precise
solutions. These efforts, however, have been confined mainly to solving
the one-way, or single-leg, trajectory; that is, depart one planet on a
certain date and arrive at the target planet a specified number of days
later. In manned interplanetary applications the return trajectory must
also be computed. In general, the departure and return portions of the
trajectory cannot be computed independently. The two trajectories are
related by boundary conditions at the target planet which cannot be
specified arbitrarily.

This paper will present a technique for computing both departure
and return legs of the trajectory by satisfying a set of constraints at
the target planet and leaving the flight times as free variables. An
important part of the technique that will be discussed is that of insuring
continuity in the trajectory state at the sphere~of-influence boundaries.
The solution as presented here insures continuity in position, velocity,
and time at the sphere-of-influence boundaries.

By insuring continuity at all sphere-of-influence boundaries, a
trajectory is obtained which may be used as a reference trajectory in,



for example, navigation and guidance studies. This use distinguishes

this technique from many matched-conic techniques in which planet-to-planet
heliocentric conics are computed and then certain characteristics of these
conics are used in meeting various mission constraints. Most techniques
of this type are essentially search techniques, usually seeking out launch
dates and flight times. The technique to be presented here has much of
this same search capability, but has as its main purpose the production

of a reference trajectory. The literature today abounds with data from
programs utilizing search techniques. These data, launch dates and flight
times, are used in the technique discussed in this paper as first approxi-
mations that are improved upon in the process of obtaining a more precise
trajectory.

This technique has been programed for the UNIVAC 1108 digital computer
in FORTRAN V. Several important types of interplanetary solutions are
discussed and will be presented in the order outlined below.

The next section of this paper deals with the problem of obtaining
the single-leg, matched-conic solutions between arbitrary planets. A
flow chart describing the matching process for the single-leg solution
is shown in figure 1.

The third section deals with the free flybya solution.

The fourth section deals with the problem of obtaining a parking
orbit about an oblate planet.

The fifth section explains the technique of obtaining the powered
flybyb solution with impulse added st periapsis. This solution will also
give the parking orbit solution about a spherical homogeneous planet.

All of the modes mentioned above must be solved by iteration. As
8 general rule these iterations occur in two phases, as shown in figure 2.
The first phase, called the gross iteration phase, utilizes heliocentric
conics to satisfy some constraints at the target planet. During this
gross iteration phase no matching of position and velocity vectors at
the spheres of influence is done. When the constraints are satisfied
in the gross iteration mode, the tolerances are reduced, and the fine
iteration phase begins. The fine iteration phase utilizes single leg,

8The term free flyby will refer to the situation of flying by a
planet without applying a velocity change in the vicinity of the planet.

bThe term powered flyby will refer to the situation of flying by a
planet and applying a velocity change in the vicinity of the planet.



matched conics to satisfy the same set of constraints. The end result
of the fine iteration is that the constraints are satisfied as well as
all of the other boundary conditions.

The final section of this paper will present one example of each
of the modes described above and will also give the reference from which
the launch date and flight times that were used as initial guesses were

taken.
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SYMBOLS
semimajor axis
elements of matrix
eccentricity
true anomaly
unit vector along angular momentum
altitude above surface of planet

argument of hyperbolic sine or cosine (analogous
to eccentric anomaly)

orthogonal set of unit vectors

inclination with respect to planetary equator
(which may be arbitrarily defined)

integral number

unit vector along ascending node of orbit and
planetary equator

position vector relative to Sun
position vector relative to planet
unit vector along hyperbolic asymptote
Julian or calendar date

time from zero

velocity vector relative to Sun
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velocity vector relative to planet
constraint function
right ascension

declination

cos™1 (— L)
e

gravitational constant

one-half angle between arrival and departure
hyperbolic excess velocities at target planet

tan Gw

-1 =
sdn tan i

~
~

angle between vectors n and S

right ascension of the ascending node
Subscripts

at arrival planet

at departure planet

index to resclve nodal ambiguity

refers to a planet

at return planet (usually the same as planet D,
but not required)

at target planet

refers to periapsis (or minimum distance from
planet)

refers to hyperbolic excess vector or one of
its angles



Superscripts
* at sphere-of-influence boundary

evaluated from heliocentric conic

+ evaluated from planetoecentric conic

(e) ' computed quantity

(1 where 3 = 0, 1, ..., quantity evaluated during
jth iteration

Special Notation

o~
s

the vector ()

> |

() the unit vector ()
At specified time increment
8t computed time increment

DETERMINATION OF THE MATCHED-CONIC TRAJECTORY
BETWEEN TWO ARBITRARY PLANETS

There are six independent variables specified in order to solve the
problem of obtaining the matched-conic solution between two arbitrary
planets which will be referred to as the single-leg matched conic:

TD the date of departure periapsis

TA the date of arrival periapsis

iD the inclination of the trajectory with respect
to a planetocentric coordinate system at
departure

iA the inclination of the trajectory with respect

to a planetocentric coordinate system at
arrival



hTTD the periapsis altitude at departure

hTTA the periapsis altitude at arrival

There are two additional inputs required to resolve the ambiguity in the
right ascension of the ascending node of the trajectory with respect to
each planetocentric coordinate system. These are mentioned below.

The Heliocentric Phase

If the date of arrival or departure from a planet is given, then
the heliocentric position and velocity of the planet may be computed
from the planetary ephemeris. At the departure planet the position and

velocity vectors are BPD(TD) and YPD(TD)’ and at the arrival planet,

BPA(TA) and YPA(TA)' If the spacecraft is at a known position ED(TD) or

r, (T,)
heliocentric positions of the spacecraft are

from the departure or arrival planets at the same dates, then the

Bp(Tp) = zp(Tp) + Bpp(Tp)
and (1)
Rp(Ty) =z, (Ty) + Ry (Ty).

The position BD and BA and the time TA - TD may be used to determine

the heliocentric velocities, ID and in the vicinity of the departure

v,
and arrivel planets. This problem is known as Lambert's problem and is
documented in reference 2. The velocities of the spacecraft with respect

to the planet are then found from

=v. (T.) - v -(T.)

<
H
]

D' D ' D —£D'"D
and (2)
' = -
Va(Ty) = 0 (T)) - vy (Ty).

When this procedure is used for the first time in the solution of
a single-leg trajectory, Iy and Iy are zero and the spacecraft is assumed
to be at the center of the planets at the dates TD and TA' After the

planetocentric computations, good estimates for gs and EK are obtained.

These values of r, and r, are superscripted (*) to indicate that they

are taken at the sphere of influence of the planet.



The dates at the spheres of influence must also be corrected at
arrival and departure. Therefore, the vectors

®(T%) = p¥(T# *
R (TD) ED(TD) + BPD(TD)
and (3)
®(T%) = pk(T* *)
BR(TR) = zi(T}) + Bpy (TR) 5
¥ = * =
where TD TD + tnD and TA TA + tnA’
are now used in the solution of Lambert's problem to obtain ys and XK.
The velocities at the spheres of influence are
%1 (%) = UR(T*) _ *
vy ' (T8) = YR(TE) - Vo (TH)
and (4)
%V (TR = UR(T*) — *
w3 (T0) = TA(T) - T, ().

The superscript (') indicates velocities computed from heliocentric orbits
assuming massless planets.

The Planetocentric Phase

To compute the trajectory within a planetocentric sphere of influence
the following is required:

r* the position vector of the spacecraft with respect to the

planet at the sphere of influence. This vector was com-
puted during the last sphere-of-influence computation, and
remained unchanged during the heliocentric phase.

v*! the velocity vectors of the spacecraft with respect to the
planet at the sphere of influence. This vector was com-
puted during the heliocentric phase from equation (L4).

i the inclination of the hyperbola with respect to the planetary
equator (or some other arbitrary plane)

h1T the periapsis altitude of the hyperbola

k an index which specifies which node is to be chosen

The computation is similar for departure and arrival and the sub-
scripts D and A are omitted except where necessary for clarity. During
the first computation of the trajectory in a planetocentric phase, the



position r* is unknown except for its magnitude, and the velocity v*'

must be approximated by the velocity of the spacecraft relative to the
planet and evaluated at the center of the assumed massless planet according

to equation (2). This causes no special problem since xﬁ and XA are

fairly good approximations to the sphere-of-influence velocities XS' and

* 1
v5'e
the v  vector to be computed. During the first computation in a sphere

The only real purpose for requiring both r¥* and v¥*' is to allow

of influence the v must be approximated, while during subsequent passes,

the v may be computed exactly.

a. When the spacecraft is assumed to be at the center of the planet
(r., or r, = 0), the hyperbolic asymptote is computed approximately from

I oF Iy
S=ztv"/v', (5)
where (+) is for departure and (-) is for arrival.

The magnitude of the hyperbolic excess velocity is computed from
= [z - *
v, \Nv! 2u/r (6)

b. When the spacecraft is at the sphere of influence, the hyperbolic
excess velocity and asymptote may be computed exactly from

r* . v*'
v, = {————————-[} - cos (fm - f*ﬂ-—l" %‘ sin (fw - f*)}:r*

* =
prr* r

+ {l - g—:— [1 - cos (f_ - f*):l}l*' (1)

‘Where

-1 Lz ¥
cosfoo =% p* = y , e* = \l-,l _ P /a%
2 y*12 )1 1 *

a* =(;¥ - ) , cosf* = pe ;L. -1
f_ - f* > 0 for departure

f -~ f* < 0 for arrival



The hyperbolic excess velocity is

Ve = 1% (8)
and the asymptote is
§ =1 %lv . (9)

The trajectory within the SOI is initially given of course by r¥*, v*'.

This trajectory has orbital parameters which are in no way related to

the orbital parameters which are specified. By propagating this trajectory
to infinity using equation (T7), the inclination and periapsis radius that
would be found from r* and v*' lose all meanmng Therefore the specified
periapsis conditions I may now be imposed.

~The only problem remaining in the SOI phase is to take the quantities
v, S, i, hﬂ, and r* and determine the position and velocity vectors at
periapsis r and v and the time tTT from periapsis to the SOI. These

results may be easily derived from figures 3 and 4 and the results stated
simply as

A

rop* er(cosn 8, - sinn b x éD)

and - (10)
Yo = v p(sion éD + cosn h éD)

for departure, and
T r“A(cosn éA + sinn ﬂ x éA)

and (11)
Vo= vﬂA(—sinn éA + cosn h x éA)

for arrival where
r =

hTT + Radius of planet

<
3
n
=
H ll\)
]
1
o |-
e
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cosn = - %-, % <<
e =1 - rTr/a

and

A ~ ~

h=15s5inQ sin i - J cosQ sin i + k cos i.

The right ascension of the ascending node © is ambiguous. From

figures 3 and k4,
a -0
Qk =
o+o0c +Tw

where a is the right ascension of the asymptote. It may also be seen
that for departure the nodes which give the maximum (k = 1), and minimum
(k = 0) periapsis declinations are

Ql=(x+0+'rr

QO =0 -0

and for arrival the nodes which give the max1mum and minimum perlap51s
declinations are

Q. =a+0+T

(tah § )
= ain~l i
g = sin —
tan i

§ = declination of the asymptote.

where

The time from periapsis to the sphere of influence is given by

= 1J-_;L3 (e sinh H - H) (12)

where the plus sign is used for departure cases, and the negative sign
for arrival cases. Also

- [2(-2)]
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The position and velocity vectors at the sphere of influence satis-
fying the specified inclination and periapsis altitude may now be computed

from -
+ r*(]l - cosf rr
r* .ﬁ_ Lp l] ‘*‘1 WSinfLT
\FJB
and
-1 T
ve = == JE ginf + - = -
A r"J; r 1 > (1 - cosf)f v_
where

cosf = (p/r* - l) ;e-

p=all - e?)

i
—-—< f <

5 for departure

7 < f < 3n/2 for arrival

(13)

Note that r* in equation (13) has an additional superscript (+) to

indicate that it differs from the original r* of equation (7).

4+
vector r* 1s used in equation (3) to determine the heliocentric position
vectors of the spacecraft at the spheres of influence.



THE MATCHING PROCESS TO OBTAIN A SINGLE-LEG TRAJECTORY

The process of matching the position and velocity vectors at the
spheres of influence to obtain the single-leg matched conic is essentially
done by a successive approximation technique. The logic of the computa-
tional scheme is presented also in figure 1 and is given below:

a. Given the departure and arrival dates T and T,, the

D A’

heliocentric solution gives the relative velocity wectors 25 and XA’ with

the spacecraft assumed to be at the center of the departure and arrival
planets at dates T and TA’ respectively.

D
b. Given the relative velocity vectors zﬁ and !A or
the sphere-of-influence velocities 23' and XX' computed in the heliocentric
phase along with the inclinations iD and iA’ the altitudes hTTD and hnA’
the position and velocity vectors £S+, Xs, £X+, and XX at the spheres of

influence are computed in the planetocentric phases. The times from each
periapsis to each sphere of influence, tnD and tnA’ are also computed.

¢. The heliocentric phase is now repeated adjusting the helio-
centric positions of the spacecraft and the departure and arrival times

according to equations (3). This solution gives the velocities v*1 and

X?A at the arrival and departure spheres of influence, respectively.
: ¥ ¥ ®1 oy
d. The velocity errors Igb 19' and IXA XA' are now

computed. If they are less than the tolerance, the solution is assumed
to have converged. If the tolerance is not met then steps (b) and (c)
are repeated.

This process may be visualized by considering that the position vector
at the sphere of influence r¥ and the date T¥ are changed until v¥ = v¥'.

THE FREE FLYBY MATCHED CONIC MODE

The solution to this problem requires the following specifications:

TD departure date periapsis
iD inclination at the departure planet D
i inclination at the return planet R
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h1TD periapsis altitude at D
hTTR the periapsis altitude at R
hnT the periapsis altitude at the target planet T.

The flight times t time from departure to target, and t time from

T R?
target to return, are dependent variables and require initial guesses.
There is an additional constraint which must be satisfied in order to
attain the free flyby, the velocity magnitudes of the arrival and depar-
ture hyperbolic excess velocities must be equal. The flight times must
be computed by a numerical iteration procedure such that the flyby
constraint is satisfied and the computed periapsis altitude is equal

to the specified value.

The iteration is done at first using only heliocentric conics and
ignoring all the boundary conditions except TD and hﬂT' This phase is

called the gross iteration phase and is done for the purpose of improving
the flight times and for determining the flyby inclination iT and resolving

the nodal ambiguity.

When the flyby constraints are approximately satisfied, the computa-
tion proceeds to the fine iteration phase. 1In this phase, all of the
boundary conditions and the flyby constraints as well as continuity at
the spheres of influence are satisfied. The trajectories used in this phase
are single-leg, matched-conic solutions, whose solutions are described in
a previous section. The computation for both iteration phases is illus-
trated schematically in figure 2.

Computation of the Free Flyby Trajectory Within the
Target Planet Sphere of Influence

It is assumed that the hyperbolic excess velocitieszfzmAT and YepT?

have been computed and that their magnitudes are approximately equal.

These velocities may be computed by either of the methods described in

the section on the planetocentric phase, depending upon whether the ve-
locities are relative velocities and the planets are assumed to be massless
or the position and velocity vectors at the sphere of influence are known.
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From figure 5 it is seen that the plane of the orbit may be
computed by

~ v X v
Topr * Yopr .
— — ll"
T [Yopr -YooDTl (1)

The inclination may be found from

A i .
cos i hT (15)
The angle 2v between YeoAT and XwDT is found from
v X v
sin 2y = L=AT =DT| (16)
VopT VeDT
The radius of periapsis is computed from
r(c) =a (1 - ¢sc v) (17)
T
where
o=l
VaDT VAT

(e)
T
is actuslly specified. The iteration technique

It should be emphasized that r is a computed value because in

the free flyby mode roo

described in the next section will give details as to how the flight

times t,, and t_ are adjusted so that the difference r - r(c) is forced
T R T T

to vanish.

The inclination i, is to be used in the single-leg computations in

T

lieu of specifying i An additional quantity k is required in order to

7
determine which of the ambiguous nodes is to be chosen. The decision as
to which k to use is found by examining figures 3 and k.

The nodal vector nk is found from

. K
L, (28)
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It is seen that for the departure leg that

coséy = my * Spp
and that cos¢>D must always be negative for a maximum periapsis declination

(k = 1) and positive for a minimum periapsis declination (k = 0).

If cos¢D <0, Ql =g + 0+

It cos¢D >0, QO =90 -0

Similarly, for the arrival leg,

~

coséy =1y * Spp -

The cos¢, must always be positive for a maximum periapsis declination

(k = 1) and negative for a minimum (k = 0).

If coscbA >0, Ql =a -0 .

n
[od
+
Q
+
=]

It coscbA <0, QO

Iterative Scheme for Computing the Flight Times
for the Free Flyby

In the solution for the free flyby it is required that the flight

times tT and tR satisfy the constraints,

v = VOOAT - vaT =0 (19)

1
Yo = hpp - hﬁé) =0 (20)
(e)

wT
specified. During the gross iteration when only the constraints in
equations (19) and (20) are to be satisfied, equation (2) provides veloe-
ities which reduce the error in equation (19) to 0.1 km/hr and the error
in equation (20) to 0.1 km when the iterations are completed. When this
order accuracy has been obtained, the fine iteration procedure is begun
and the flyby constraints and all other boundary values must now be
satisfied. The fine iteration uses the more precise velocities computed

The periapsis altitude h is computed from equation (17) and h o is
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from equation (6). The fine iteration is continued until the errors in
equations (19) and (20) are .0l km/hr and .01 km, respectively.
The variables Yy and y, may be considered functions of the flight

times tT and tR.

=y (tT, tR) (21)

Y, =¥, (tqs tg) (22)

2

The solution to these equations may be done numerically by the Newton-
Raphson method as described in reference 4. Symbolically the solution
may be written,

0)

_ L
to = tn |+ Sty (23)
and (O) ,
- = + &t .
tR tR it {2k)
where
(0)
8ty 8 85 ¥y
Sty “81 %1 Yo
and |A| = 811855 = 81585
The matrix elements aij are defined by the partial derivatives
- ] = ) - ’ =
11 atT 12 atR 21 8tT 22 BtR

These derivatives are rather formidable, if not impossible, to obtain
analytically, but they may be obtained numerically by the following
procedure:

1. Compute a pair of trajectories (that is, one from departure
planet to the.target planet, and another from the target planet to the
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0 0
return planet) using the first-guess times té  and té ). Then form
the residuals
(0) _ (0)y _(0)
vy Yi\tr > tr
and
(0) _ (0)
Io To\tp * | :{0)
R
. . . . (1) _ ,(0)
2., Compute a second pair of trajectories using the times tT = tT
+ AtT and téo); that is, increment téo) by AtT and hold téo) constant.
Then form the residuals
(1) (1) (0)
vy = Ytr o s TR
and
(1) (1) (0)
EPE Y L B
3. Now compute a third pair of trajectories using the time téo)
and t(z) = t(o) + At_ and form the residuals
R R R
(2) (0) ,(2)
and '
(2) (0) (2)
SPUR P8 IS
The partial derivatives may now be approximated.
(1) (0) (2) (0)
. RS . RSS!
11 > 12 T
AtT AtR
(1) (0) (2) (0)
. =2 " V2 L =2 "%
21 AL 22 At

T R
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4. Now compute a fourth pair of trajectories using the corrected
times from equations (23) and (24). If equations (19) and (20) are still
not satisfied to some tolerance, then the entire procedure may be repeated.

MATCHED~CONIC TRAJECTORY WITH A PARKING ORBIT ABQUT
AN OBLATE PLANET

The solution to this problem requires the following specifications:

T the departure periapsis date

T the return periapsis date, or TT’ the target planet
periapsis date

the inclination at the return planet R

D

hTrD the periapsis altitude at D

hnR the periapsis altitude at R

HTrIII the periapsis altitude at target planet T
ts the stay time at the target planet

In addition, the constraint that the parking orbit be accomplished
in an integral number of orbits must be imposed.

It is assumed the hyperbolic excess velocities, Y am and v have

AT —DT?
been computed. These velocity vectors were computed assuming that there
was a specified stay time ts at the target planet. If the radius of

periapsis at the target, T is also specified, then it is possible to

find several solutions for the parking orbit that contain VoAT initially

and at the end of the stay time. (See fig. 6.) The rotation of the

v
—DT
parking orbit is accomplished by the secular perturbations that arise from
the target planet's oblateness. The rates of change of the node and the
argument of periapsis of the parking orbit are given by

2
. 3nJ R
§=.—=238 cos 1 (27)

2a2(1 - e2)2
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and )
. 3nJ R
§=--———2=2B (—Z— sin2i - 2> (28)
2a2(1 - e2)2 \
where
n = —-E ]
a_3

None of the other elements undergo secular perturbations.

The solution is nonunique and further must be done numerically.
The technique used to solve this problem is discussed at length in
reference 3, and will not be repeated here. It is sufficient to say
that the technique yields several pairs of inclinations and eccentricities
for the parking orbit.

A unique solution to this problem may be obtained by requiring that
the stay time be accomplished in an integral number of orbits,

t - uple) = 0, (29)

where

r3

p(c) = opgf—T — (30)
(1 - e)3y

is the computed period.

The integer m is determined from the relation

t
m = INTEGER PART of (%—)-) (31)

P

The constraint that the stay time be accomplished in an integral number

of orbits can be satisfied by permitting either tT to be free and con-

straining the total flight time, or by permitting the time tR to be free
and constraining the time tT

Let T denote either t. or t.. The constraint given by equation (29)

may then be written
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y(t) =t -mP "’ = 0. (32)

The time T may be found iteratively by the Newton-Raphson scheme,

(0)
T(l) = T(O) - X———LT‘)‘ ’ (33)
dy/dt
where
(1) (0)
e g £

This scheme requires two pairs of trajectories in order to establish
the derivative, equation (3L4). The first iteration is a gross iteration;
that is, no attempt is made to solve all of the boundary conditions or
to force continuity at the spheres of influence. Succeeding iterations
are fine iterations requiring all boundary conditions to be matched as
well as continuity at the sphere of influence. The only boundary condition
that is not specified is the inclination at the target planet which is
found from equations (27) and (28).

MATCHED -CONIC TRAJECTORY WITH COINCIDENT PERIAPSIS
POSITION AT THE TARGET PLANET

. The solution to this problem requires the same specifications as
in the last section. If the stay time is not equal to zero, then the
solution yields the parking orbit about a spherical homogeneous planet,
with the further restriction that the stay time, if not zero, must not
be less than that of a circular orbit at the specified altitude hnT'

If the stay time is specified to be zero, then the solution yields
a powered flyby with impulse applied at the periapsis. Both of these
modes may be conveniently handled by the same formulation since both
have the common constraint that the periapsis position vectors for arrival
and departure at the target are coincident.

As in the previous section for the parking orbit about an oblate

planet, either tT or tR may be left free in order that the periapsis

altitude hTTT may be specified.

It is assumed that the hyperbolic excess velocity vectors Y oAT and

YepT have been computed. The inclination and the choice of the node to

be used are determined exactly as in the free flyby case. The radjus
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of periapsis must be computed differently since the trajectory is not
continuous in velocity.

The sclution for the radius of periapsis starts with the requirement
that the periapsides of the arrival and departure hyperbolas must be
coincident. Figure T shows that this requirement may be expressed as

ny ¥ np tko=2m (35)
where
-v v
¢k = cos~! V—-AE ;—]E , (36)
oAT DT
= cos—! =L
n, = cos . r(c) N s (37)
7T “opT/u
and )
nD = COS ( ;l . (38)
CJ)..2
1+ rTrT vaT/u

For the given flight times t

(e)
T

Equations (35) through (38) may be solved iteratively for

T and tR, and stay time ts’ the computed

radius of periapsis r is a function of only the velocity vectors

Yopr 2% Lopyp:
c)

T by a Newton-Raphson technique.

e

A second iteration is required to satisfy the constraint,

oo - hﬁé).= 0. (39)

This constraint may be satisfied by permitting either the time tT to be
free and constraining the total time or by permitting the return time tR

to be free and constraining t The computation is similar to that for

T
the parking orbit about an oblate planet, discussed in the previous section.
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SOME EXAMPLE PROBLEMS

Three examples were chosen to illustrate the use of this technique.
In each example the departure date and launch times were chosen from the
recent literature. The flight times were adjusted during the computation
process in order to satisfy the mission constraints.

The first example, presented in table I, is an Earth-Mars-Earth free
flyby case. The data for this case was chosen from reference 5. The
initial guesses for flight times were found to be 130 days from Earth
to Mars and 540 days for the return to Earth, and Earth departure date
of 2 Lk2 670 J.D. Table I, which presents this trajectory, indicates
that these times were changed to 136.61598 days and 539.647Th4 days,
respectively, in order to satisfy the constraints. The flyby and altitude
constraints, equations (19) and (20), were satisfied to 10-3 fps and
10-% n. mi., respectively.

The second example, presented in table II, was chosen from reference 6.
This case is of the low energy, conjunction class of Mars missions. The
flight times were chosen to be 330 days from Earth to Mars and 250 days
for the return to Earth. The Earth departure date was 2 L4k 920 J.D.,
and the stay time at Mars was chosen to be L50 days. The oblateness of
Mars was used in order to change the orientation of the parking orbit at
its periapsis such that no plane changes were required. The time to
return was allowed to be free in order to satisfy the integral orbit
constraint, equation (32). The return time changed to 250.03270 days
and the parking orbit solution chosen had an apoapsis altitude of
L671.63 n. mi.

The third example is presented in table III and was suggested by
reference 7. This case is an Earth-Mars-Earth powered flyby. The time
to Mars and return time to Earth were chosen as 150 days and 280 days,
respectively. The total Earth trip time was constrained to be 430 days.
To satisfy the periapsis altitude constraint, equation (39), of 200 n. mi.,
these initial flight times were changed to 215.20096 days and 214.7990L4 days.

CONCLUDING REMARKS

A technique for matching conic trajectories at gravitation sphere-of-
influence boundaries is presented. The match is done insuring continuity
in position, velocity, and time at the sphere-of-influence boundaries.

The technique is extended to several types of round-trip planetary missions
and has the capability of satisfying in-flight constraints at the target
planet. The types of missions considered are the free flyby, the powered
flyby, and the stopover mission with a parking orbit about the target
planet. An example of each of these mission types is presented.
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The chief advantage of the technique is its capability of being
adapted to several mission types. The single-leg, matched-conic trajectory
can be used to solve other type problems; for example, the optimum powered
flyby. The requirement for its use in solving other problems is that
the constraints be properly identified and stated mathematically. The
limitations of this technique are no more severe than those for any other
matched conic, that is, it representes only an approximation to the
precision integrated trajectory.
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Figure 1.- Computation for a single-leg (one way), interplanetary, matched~conic trajectory,



28

START

|

HoNIQCENTRIC SINGLE LEG
bT0T MATCHED CONIC
DTOT
, !
HELIOCENTRIC SINGLE LEG
CONIC MATCHED CONIC
TTOR TTOR
L _ I
——
TRAJECTORY
IN TARGET
PLANET SOI
]
GROSS ITERATION INCREMENT FINE ITERATION
LooP FLIGHT TIMES LOOP
TO SATISFY
CONSTRAINTS

(GROSS MODE)  NO_~{7eraTion\NO (FINE MODE)
COMPLETE

SWITCH

TO FINE FINISH

MODE

Figure 2.- Computation for round=trip interplanetary, matched-conic trajectories,
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Figure 7.- Coincident periapsides condition.
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